Modelling of classification rules on metabolic patterns including machine learning and expert knowledge
نویسندگان
چکیده
منابع مشابه
Modelling of classification rules on metabolic patterns including machine learning and expert knowledge
Machine learning has a great potential to mine potential markers from high-dimensional metabolic data without any a priori knowledge. Exemplarily, we investigated metabolic patterns of three severe metabolic disorders, PAHD, MCADD, and 3-MCCD, on which we constructed classification models for disease screening and diagnosis using a decision tree paradigm and logistic regression analysis (LRA). ...
متن کاملdata mining rules and classification methods in insurance: the case of collision insurance
assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...
15 صفحه اولthe effect of explicit teaching of metacognitive vocabulary learning strategies on recall and retention of idioms
چکیده ندارد.
15 صفحه اولinvestigating the effect of motivation and attitude towards learning english, learning style preferences and gender on iranian efl learners proficiency
تحقیق حاضر به منظور بررسی تاثیر انگیزه و نگرش نسبت به یادگیری زبان انگلیسی، ترجیحات سبک یادگیری و جنسیت بر بسندگی فراگیران ایرانی زبان انگلیسی انجام شد. برای این منظور، 154 فراگیر ایرانی زبان انگلیسی در این تحقیق شرکت کردند. سه ابزار جمع آوری داده ها شامل آزمون تعیین سطح بسندگی زبان انگلیسی آکسفورد، پرسشنامه ترجیحات سبک یادگیری براچ و پرسشنامه انگیزه و نگرش نسبت به یادگیری زبان انگلیسی به م...
Combining machine learning and expert knowledge for classifying human posture
This paper presents a rule engine for classifying human posture according to information about the location of body parts. The rule engine was developed by enriching decision trees with expert knowledge. Results show 5 percentage points improvement in accuracy compared to support vector machines and a significant 11 percentage points compared to decision trees. The incorporation of expert knowl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biomedical Informatics
سال: 2005
ISSN: 1532-0464
DOI: 10.1016/j.jbi.2004.08.009